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The way in which the boundary valucs of the vorticity are approximated in the numerical
solution of the Navier-Stokes equations affects the rate of convergence and accuracy of the
solutions. In this paper two classes of boundary approximations are studied. The problem
of viscous flow in a square cavity is choscn as a model. Numerical solutions are obtained
for Reynolds numbers 1, 10, 50, 100, 500 and 1000 and the iterativc procedure is found to
become faster with a decrease in the local accuracy of the bourdary approximnation. Detailed
comparisons are carried out in order to detcrmine accuracy of various numerical solutions.
Several parameters, based on the numerical solutions, are found to vary monotonically and
approach certain limiting values. These parameters are considered to be reliable indicators
of accuracy and are recommended for comparison of numerical results obtained by different
methods.

INTRODUCTION

Several papers have appeared in the Jast 15 years on the numerical solution of the
Navier-Stokes equations governing the flow of a viscous incompressible fluid. The
solution procedure consists of discretizing thc differential equations and boundary
conditions over the fluid flow region and solving the resulting system of algebraic
equations. Finite difference methods are generally employed in (he discretization
although lately finite element methods have also been used. For two-dimensional and
also for the axi-symmetric flows it is convenient to introduce stream function and
vorticity as dependent variables. The cquation of continuity is autematically satisfied
and the resulting system consists of two coupled nonlinear equations which are solved
numerically by some iterative procedure.

Aside from the fact that these coupled equations are nonlinear, there arc sevcral
other difficulties associated with their solution. The major difficulty is that the values
of vorticity on no-slip houndaries are not known a priori, while these values are
needed in order to solve the discretized problem. Since there are no analytic solutions
available for a physically interesting problem of viscous flow, it is difficult to ascertain
the accuracy of the numerical solutions. The geometry of the problem also introduces
additional difficulties in the numerical method. Some authors prefer the use of
velocity-pressure {ormulation of the Navier-Stokes equations in order to avoid the
difficulties arising from the introduction of vorticity. However, the pressure equation
is complicated and introduces additional difficulties.
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In order to test a numerical method, it is customary to choose a simple model
problem. The flow of a viscous incompressible fluid in a rectangular cavity is often
chosen for this purpose. Mathematically, this choice is rather unfortunate because
of the corner singularities. Several numerical methods have been proposed in the
literature. These methods differ in the choice of discretization schemes, the boundary
approximations used to define vorticity on no-slip walls, and the methods used to
solve the resulting systems of algebraic equations. The numerical solutions are
usually compared in terms of the values of stream function or vorticity at some
representative points and also by comparing the values of certain parameters of the
flow.

It has now been established that central difference approximations provide con-
vergent and accurate numerical solutions only for small values of the Reynolds
numbers. For large Reynolds numbers, some upwind differencing is essential.
However, the effect of various boundary approximations on the overall accuracy
has not been studied systematically. From the study of the biharmonic equation,
which is a special case of the Navier—Stokes equations with zero Reynolds number,
it is known that the boundary approximations significantly affect the accuracy of the
numerical solution as well as the rate of convergence of the overall procedure
[7, 10, 12].

While most authors have used the conventional boundary approximation based
upon a reflection principle, some others have considered higher order approximations.
Many authors have encountered difficuities with second order boundary approxi-
mations. Due to these difficulties the second order formulas have been termed unstable
and the conventional formula is generally recommended [20].

In this study we examine two classes of boundary approximation formulas. These
formulas have been successfully used for the solution of the biharmonic equation
[7, 10, 12]. In the class of first order formulas, the boundary vorticity is defined in
terms of the given data and the stream function values at one point inside the flow
region. For the second order formulas, the stream function values at two points inside
the flow region are used to define the boundary vorticity. Effect of these boundary
approximation formulas on the accuracy of the numerical solutions as well as on the
rate of convergence of the numerical procedure is discussed.

In order to compare the accuracy of various numerical solutions, we consider
several parameters such as the vortex centre, the maximum value of the stream
function, the wall vorticity, the corner vortices and the shear force on the top wall of
the cavity. Detailed comparisons are carried out for various Reynolds numbers and
comments are made on the suitability of these parameetrs as reliable indicators of
accuracy.

Numerical solutions of the cavity flow problem are obtained using a uniform mesh
(h = 0.05) for Reynolds numbers 1, 10, 50, 100, 500 and 1000 with various boundary
approximations. In addition, the second order boundary formula due to Woods [27]
is also used for comparisons. Although most of the numerical solutions given here
have been obtained by using upwind difference methods, some solutions at low
Reynolds numbers have also been obtained using the central difference scheme.
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It is concluded that if one desires to obtain a crude approximate solution of the
Navier-Stokes equations, it can be obtained very cheaply using an appropriaie
boundary approximation formula. We also discuss why some second order formulas
are considered unstable and indicate how a suitable choice of boundary formulas can
yield a numerical solution which is comparable in accuracy but easier on computing
budgets.

2. THE CaviTY FLow PROBLEM

The flow of a viscous fluid in a square cavity is governed by the following Navier-
Stokes equations:
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In order to solve these equations numerically, the square cavity is covered by a
uniform mesh of width 4. The set of mesh points is defined by

Dy ={x;,v)ix; =iy, =jhij=12,...n—1;nh = 11

The set of boundary mesh points is denoted by ¢D; . The finite difference approxi-
mation of the stream function equation is given by

Ah‘;’fz'j =h 2 0+ e+ P+ s — dl=w;, T<ij<n—i 2.4}
The upwind scheme for the vorticity equation (2.2) is given by

Lywy = Kiwig; + Kowy g + Koy + Kyw; 54
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K =1-— %R(Bij — 1B, Ky =14+ 41R(B:; + | B b
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Ky =4+ 3R(| oy | + 1B 1)



268 GUPTA AND MANOHAR
and
Oy = ‘/fz'+1,a' - ‘/’i—u ’ Bz’i = '7[’2',1'+1 - ‘pi,j—l .

The boundary values of ¢ and w must be prescribed in order to solve the systems of
equations (2.4), (2.5). The boundary values of ¢ are

l[’i‘j = 05 (xi }) J’J) € aDh i) (26)
whereas the boundary values of w are defined in terms of ¢ (w = —44) and may be
prescribed as

wy = —dyby, - (x:,y;) €Dy, 2.7

Assuming (x; , ¥;) lies on the left boundary x = 0, then

wy; = —h iy + Py + Posen + o5 — Kbyl (2.8)

The value of _, ; is undefined in the above expression as the point (x_;, y;) lies
outside the square cavity. Since the normal derivative du/0x is known on the boundary,
the following reflection formula may be used to define ¢_, ;:

(s = P00 4 00

or
oy = P — 2h(he)e; + OR®). (2.9

Substitution of (2.9) into (2.8) vields the following ‘“‘conventional approximation™:

woi = 241 + Po,i01 + P — Abo.i — 2h(ada,i]- (2.10)

Similar expressions may be written for the other parts of the boundary. The approxi-
mation (2.10) has been widely used in the litearture [4, 14, 15, 17, 20, 21, 24, 26].

Some authors [9, 16, 20, 24] divide the set D, of interior mesh points into two sets
Dy, and Dy ,, where D, contains mesh points adjacent to the boundary (at a
distance k) and D, , = D; — D; ¢, and solve different algebraic problems on the two
sets of mehs points. As an example, Greenspan [9] solved the stream function
equation (2.4) only on D, , (i.e., for 2 << /,j << n — 2) and defined the i-values on
Dy, ; using interpolation such as

thyy = Hipos 1 3thos + 20(a)o 5] 2.11)

It is noted that the boundary value of w,; depends on ; from (2.10); the value of ¢,
depends upon ,; from (2.11). The combined effect is that wy, is defined by the fol-
lowing formula

Wy; = "h‘2[%‘/‘2y' - “‘/’01’ + ‘;bo,j-%—l + l/’o,j~1 - h(’)l‘a’)mi]' (2'12)
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Observe that the approximation for wy; given by (2.10) depends upon the value of
4;,; and the known data. Similarly, the approximation (2.12) depends upon the vaiue
of ¢, ; . In general it is possible to define a first order approximation to w,, in terms
of ¢,; and the known data by a formula called the (p, 0) formula given by

.7 2 2 \
we; = —h7? [72“ by + Po.541 T Po.i-1 — 2 4 2p7%) Po. ““Eh(‘/}m)o,j] (2.13)

where p is a positive integer. Orszag and Israeli [18] have mentioned this formula as
a possible generalization of Thom’s formula for a one-dimensional model problem.

A second order approximation, denoted symbolically as the (p, g) formula, is
given by

wy; == —h? [“‘2‘]30“,[‘;),,' + zpaal/',q’]_ + Sl’o,i—u T ‘1[‘0,1‘—1
-2 (2L zj;z L) hhado.s — 2 + 2% — 26%) o] Q.14

where p, g are positive integers, p # ¢, and « = p~2¢(p — ¢)*. The (p, q) formula
defines the values of w, ; in terms of two -values at (x, , ¥;) and (x,, y;}, besides the
known data. In particular, the (2, 1) formula is given by

Wy,; = #h_a[_%‘l’z,j + 4‘!’1,1’ + ’7[‘0,9'+1 + Sl’o,i—l - 3]7(‘!'%)0,9‘ - %‘r’”e,i]- (2,i5}

This formula has been used by several authors. Roache [21] calls it Jensen’s formula.
1t has also been called Briley’s formula. Wu [28] recommends the use of second order
boundary approximations but also notes that with such formulas the principle of total
vorticity conservation may be violated. Several authors (see [211) have called the
formula (2.15) vnstable. In fact the rate of convergence of the iterative scheme is
slow when (2.15) is used. We discuss this matter in Section 5.

Some other second order formulas from the class (2.14) are:

The (3, 1) formula:
we, = —h[—§s; 1 3y + o Poior — §(DDes — ol (2.1}
The (3, 2) formula:

Wa,j = _h—zg"%‘;‘a,y‘ + %sz; + ‘l’o,fﬂ -+ ‘;l‘o,j—l - %M‘/‘;)c "‘ '%%zpl’ﬂ,j]; (217
The (4, 3) formula:
wo; = —h [ —3hy; + §ia + Pour L P — o — iyl (2.18)

Orszag and Israeli have mentioned some (2, 1) and (3, 1) formulas for their one-
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dimensional model problem [18, Eqns. 38, 39]. Howevet, their formulas seem to be of
first order in general.

The boundary approximations given by the class of formulas (2.13) and (2.14)
include most of the formulas used by other authors. An exception is the so called
Woods formula given by

Wy, = _‘/1‘2[3‘#1,]' =+ ¢o,i+1 + ¢0,i~1 - 5‘/‘0,1' ‘_ 317(‘/’9:)0,]‘] + dw; . (219)

This formula has been used by several authors [1, 2, 3, 21, 23, 27]. It defines the
boundary vorticity in terms of ¢, ; and w, ; besides the known data. This formula
has a truncation error of order 4% and one expects to obtain more accurate results
using Woods’ formula compared to those obtained using the conventional (1, 0)
formula or any other first order formula of the class (2.13). Since the accuracy of
Woods’ formula is of the same order as those of formulas of the class (2.14), we
expect the solutions to be comparable. In order to make our discussion complete,
we also give results obtained using Woods’ formula. Intuitively the formula (2.19)
may appear better than the class of formulas (2.14) because of the inclusion of
additional information. However, this is not the case as will be shown here.

3. ITERATIVE PROCEDURE

The solution of the discrete Navier-Stokes equations (2.4) and (2.5) is obtained by
the following iterative procedure:

(a) Start with some initial approximation ™ of the vorticity with m = 0.
If no such approximation is available, set w™ = Q.

(b) Solve the stream function equation (2.4) to obtain ¢‘**V from:
Ay = —wf, G.1)

(¢) Determine the boundary values of the vorticity from the formula (2.13)
or (2.14). Call these values @'+, Obtain the modified boundary values w™+D
using a smoothing (or damping) parameter 8:

wintl) — (1 — 8) @lm+1) -+ Sw(m), 0 < S < 1. (32)
(d) Solve the vorticity equation (2.5) to obtain w+1 from
Lyw'™ = 0, (3.3)

(e) Repeat the steps (b) to (d) for m = 1, 2,... until some convergence criterion
is met.

The iterative steps (b) to (d) form an “outer iteration.” If the equations (3.1) or (3.3)
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are solved by an iterative procedure, then the steps (b), (d) are called inner iterations
for glr, w.

4. COMPUTATIONAL PRELIMINARIES

In general it is easy to solve the discrete Poisson equation (3.1} by using the succes-
sive overrelaxation method or some other iterative procedure provided the region
under consideration is rectangular and some optimal relaxation parameters are
available a priori. This, however, is not possible for the equation (3.2). Direct solvers
are now available which are quite efficient and use of these solvers eliminates the
search for optimal relaxation parameters. Since our basic interest is to test varicus
boundary approximations, we chose to eliminate the uncertainty arising from the
inner iterations in order to make an objective comparison of our final results
Although many of the direct methods are computationally as fast as the iterative
methods, the storage requirements become prohibitive when /4 is small.

A nonzero value of the damping parameter & in (3.2) is essential for the convergenice
of the numerical procedure (see [7, 10] for proof of the case R = 0). For an estimate
of 5, we first determine the growth factor p of the outer iterations. The value of p is
estimated by using 6 = 0 for a small number of iterations in the procedure of
Section 3 and computing

H d,(ml) — 1][,(:1) \)

~ \‘ l/}('z) (n—1) ' " 2

o~
AN
-

n large

The norm used in (4.1) is the maximum norm |4, = max ¢, |. Let p =
{(p — DJ(p + 1). For convergence of the outer iterations, & should be chosen [7]
such that

p< 8 <, 4.2)
and a near optimal value of § is given by

Sopt - —*p‘—‘_ .

p+2

N
£
(=)

Most of our computations were started with «® = 0, although this was not
necessary. The outer iterations were stopped when

H w® ~ yin-1 "‘ < €. (4,_3_5

This convergence criterion also guarantees

\i lﬁ(") . '7[‘\'11——1) \‘ < €.

-~
=S
h

N

The value of ¢ was chosen to be 102
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5. NUMERICAL RESULTS

We have obtained numerical solutions for R = 1, 10, 50, 100, 500 and 1000 with
a mesh size # = 1/20 using various boundary approximations. Some results for # =
1/10 are available from a previous study [11]. Solutions have also been obtained
by using the central difference scheme for low Reynolds numbers (R = 1, 10, 50, 100).

We found that with a fixed boundary approximation the growth factors p of the
outer iterations remained virtually constant for the range of Reynolds numbers
considered by us. In Table 1, we give representative values of p, p and dopt defined in
Eqgs. (4.1)~(4.3). It is noted that values of p, p and 8 decrease with the increasing values
of p when the (p, 0) formula (2.13) is used and with increasing values of p, g when the
(p, q) formula (2.14) is used to define the boundary vorticity. The effect of decreasing
dopt is to Increase the rate of convergence of the outer iterations. Thus, one could
expect a faster convergence when boundary formulas with larger values of p and ¢
are used.

TABLE I

Growth Factors, Stability Range, and Optimum Parameters

Lower bound Optimum

Boundary Growth for sinoothing smoothing

approximation factor parameter parameter

0, 9° P I3 8

1,0 10.6 0.8276 0.84
2,0 4.86 0.6587 0.71
3,0 2,98 0.4975 0.60
4,0 2.07 0.3485 0.51
2,1 16.25 0.8841 0.89
3,2 8.6 0.7917 0.81
4,3 5.75 0.7037 0.74
5.4 4.23 0.6176 0.68
6,3 4.80 0.6552 0.71
7,2 6.43 0.7308 0.76
Woods? 10.8 0.8305 0.85

¢ g = 0 indicates the first order boundary approximation (2.13), ¢ # 0 indicates the second order
boundary approximation (2.14).
Woods formula given by Eq. (2.19).

In Table 2, we give the values of § actually used and the number of iterations
required for convergence. Clearly, the number of iterations go down, sometimes
even drastically, with an increase in value of p or g¢. It is anticipated that with larger
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TABLE II

Damping Parameters 6 and Number of Iterations N

Reynolds number &

Boundary Bopt 10 50 100 500
approximation from — _ — ————
2.9 Table I 3 N ) N 5 N 8 N
L0 0.84 0.85 46 0.85 50 0.85 63 0.86 137
2,0 0.71 0.695 43 0.66 36 0.695 31¢ 0.70 73
3,0 0.60 0.58 16° 0.38 18 0,58 192 0.60 51
4,0 0.51 0.50 122 0.50 15 0.50 167 —
2,1 (.85 0.905 69 0.89 71 .89 89 0,91 202
3.2 0.81 0.825 43 0.81 42 0.83 60 0.84 133
4,3 0.74 0.73 51 0.73 30 0.73 34¢ 0,75 34
54 0.68 — 0.68 20" 0.68 262 —
Woods 0.83 0.85 40° 0.85 45° 0.85 66° 0.85 124

¢ The initial values of «'® were not taken to be zero. Thus these numbers are not comparable
with the other data, but are presented for the sake of completeness.

values of p, ¢ the boundary approximations and hence the numerical solutions become
progressively less accurate. This is borne out by our experience with the biharmonic
equation and confirms the obvious that less accurate resuits are cheaper to obtain.

It is not possible to make statements about the accuracy of the numerical solutions
in absolute terms, because no analytical solutions of the problem are available. On the
other hand, from our experience with the biharmonic equation it is possible for us
to select certain representative values of the solution and also certain parameters
which can provide a good indication of the relative accuracies of the numerical
solutions.

(1) Qualitative Comparisons

The stream function and vorticity profiles obtained with different boundary
approximations are all qualitatively correct and compare well with the profiies
published elsewhere. As an example, the stream function and vorticity profiles for
R = 50, h = 1/20 obtained with six different boundary approximations of the type
(2.13), (2.14) all look alike [11].

If only qualitative results are needed, it is advisable to use larger values of p and g
in the boundary approximations (2.13), (2.14). These formulas are very economical
compared to the conventional method. We do not, however, recommend the use of
extremely large values of p and ¢ in obtaining these solutions. As in the case of the
biharmonic equation [7, 10, 12], we believe that the second order boundary formulas
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could be used with p, ¢ as large as desired without seriously affecting the accuracy
provided that pg = O(1/h).

(ii) Quantitative Comparisons

The numerical procedure under consideration has previously been applied to the
biharmonic equation in a square under a variety of boundary conditions [7, 12].
Since exact solutions of the biharmonic equation are known in most cases, it is
possible to make specific comments about the accuracy of various numerical solutions.
In particular, the overall accuracy of the numerical solutions of the biharmonic
equation increases with an increase in the accuarcy of the boundary approximations.
Here overall accuracy is measured in terms of the maximum error at the mesh points.
The second order formulas (2.14) yield more accurate results than the first order
formulas (2.13), at least for moderate values of p and ¢. For the mesh sizes of the order
of 1/20 and 1/25 one could not, in general, expect a pointwise accuracy >10"*in
and >10? in o when the convergence criteria (4.4), (4.5) are used with € = 104,
We believe that a similar trend exists for the Navier-Stokes equations, at least for
moderate Reynolds numbers. To expect any better accuracy in terms of the values of
stream function and vorticity seems pointless to us unless both the mesh size is
reduced and the convergence criterion is modified. With this in mind, we now
examine several parameters which have been quoted in the literature to compare
various numerical solutions.

(a) Maximum Value of i, the Vortex Centre and Vorticity at Vortex Centre

The point at which the value of ¢ attains its absolute maximum is called the centre
of the primary vortex (vc). We denote the coordinates of this point by (¥, ) and
values of i, w at the vortex centre by #ivc and wye . The values of these parameters
are presented in Table 3 for various R, p and ¢. It may be noted that the location of
the vortex centres given here are limited by the mesh size used in these calculations
and the actual vortex centre may lic anywhere in the square (X 4 4, ¥ -= 4). The
results in Table 3 clearly show that (X, 7) is virtually independent of the boundary
approximation and hence is an unreliable parameter to compare the accuracy of
various numerical solutions.

The variations in the values of ive as given in Table 3 are not very large at small
Reynolds numbers. However, these variations increase with the increase in the
Reynolds number. Moreover, the values of ¢, vary monotonically with the accuracy
of the boundary approximations and . appears to be a reliable indicator of
accuracy.

It may be noted that since (X, y) does not represent the true centre of the primary
vortex (resolution errors of order /4 in each direction), the values of ¢ at (X, ¥) also
may not be the true values of ¥max in the cavity. In comparing the results obtained
using different mesh sizes, one must allow for this variation and it might be more
appropriate to compare the values of ¢ at a fixed point which may be in the vicinity
of the vortex centre.
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TABLE III

vVortex Center, Maximum Stream Function, and Vorticity at the Vortex Center.

Comparabie
results from
the literature

$max=0.0995, 1=120 [14]

Ymax=0.101, =140 193

3
bmax=0.1015, h=1,26  [td]

=0,1022, A=1;50 } {41

=3.145, h=1/50 |
max=0.1026, h=];"50i e}

Upwind Central
Reynolds  Boundary Yortex scheme scheme
number approximation center - ——
R b.q (-’?, J_') l;[’max Wy l,lfma:\' Wyo
1 1,0 0.5,0.75) 0.0993 3.00 0.0993 3.
2,0 (0.5,0.75) 0.0982 295 0.0982 295
3,0 (0.5,0.75) 0.0955 286 00955 2.84
4,6 (0.5,0.75) 0.0918 270 0.0517 2.70
2,1 (0.5,0.75) 0.0995 3.02 0.0995 3.02
3,2 (0.5,0.75) 0.1000 3.03 0.1000 3.03
4,3 (0.5,0.75) 0.1006 3.05 0.1005 3.05
5,4 {0.5,0.75) 0.1008 3.05 0.1008 3.05
Woods (0.5,0.75) 0.1082 3.33
50 1,6 (0.45,0.75) 0.1000 3.00 0.0981 3.17
2,0 (0.4,0.75) 0.0979 3.10 0.0959 3.05
3,0 0.4,0.75) 0.0942 2950 0.0921 2.84
4,0 {0.4,0.75) 0.0897 2.69 0.0877 2.63
2,1 (0.45,0.75) 0.1006 3.03 0.0987 3.21
3,2 (0.45,0.75) 0.1011 3.05 0.0991 3.23
4,3 (0.4,0.75) 0.1009 3.25 0.0990 3.21
5,4 ©.4,0.75) 0.1002 3.20 0.0981 3.15
Woods (0.45,0.75) 0.1101 3.40
100 Lo (0.40,0.75) 0.0985 3.05 0.0953 3.28
2,0 (0.35,0.75) 0.0945 3.18 0.0914 3.02 $mas=0.1032, h=1/50
3,9 (0.35,0.75) 0.0901 2.87 0.0868 2.68
4.9 (0.35,0.75) 0.0854 2.59 0.0805 2.39 ¢max=0.0935, h=1,20"
2,1 (0.4,0.75) 0.1000 3.13 0.0971 3.36 w,.=3.136,h=1/20 |
3.2 (0.4,0.75) 0.0997 3.13 0.0965 3.37
4,3 0.4,0.75) 0.0979 3.05 0.0949 3.28
5.4 (0.35,0.75) 0.0959 3.28 0.0928 311 w.=3.155A=1:50}
Woods (0.4,0.75) 0.1095 3.57

drax= 50.1053, n=1/15
0.1043, k=1/29 [23}
? 0.1040, extrapolated

Table continued
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TABLE III—Continued

Reynolds Boundary Vortex Upwind scheme
number  approximation  Center - Comparable results from
R p,q (%, 7) Ymax Wy the literature
500 1,0 (0.3,0.75) 0.0721 2.93
2,3 0.3, 0.75) 0.0687 2.00 max = 0.105, £ = 1/20 [9]
3,0 (0.3, 0.65) 0.0693 1.69
2,1 (0.3, 0.75) 0.0791 2.57
3,2 (0.3,0.8) 0.0707 2.92
4,3 (0.3, 0.75) 0.0680 2.85
Woods (0.3, 0.8) 0.0799 3.73
1000 3,0 (0.3, 0.75) 0.0541 1.76 Ymax = 0.0812, 2 = 1/50( 31
2,1 (0.3, 0.8) 0.0599 2.63 = 0.0691, & = 1/30)
3,2 (0.25, 0.8) 0.0520 3.31 Ymax = 0.0971, 4 = 1/20 [14]

Woods  (0.25, 0.85) 0.0587 4.13

The values of vorticity at the vortex centre are more sensitive to the boundary

approximations. It may be noted from Table 3 that the wy¢ values decrease with the

4 + £ 1N nead dhine:

mation (2.14). The true values of wyc probably lie between the values obtained with
the (1, 0) and the (2, 1) formulas. It must be noted that the values of w may not be
accurate beyond at most one or two decimal places for the mesh size used here and
to read in any more in the results might be misleading. We believe that wy, should be
used with caution in comparison of various numerical solutions. In some sense it
indirectly implies comparing the values of the stream function i.e., ¢ .

(b) Some Vorticity Values on the Boundaries

Some authors quote the value of the vorticity at the midpoint (0.5, 1) of the moving
wall. The values of vorticity on the boundary are obtained from extrapolation formulas
involving the values of ¢ at neighboring mesh points. In effect this is a process of
numerical differentiation and the results strongly depend upon the formula used
and the mesh size. The values of i near the boundary are small and erorrs in these
values are amplified by a factor 42 Thus a comparison of various numerical solutions
on the basis of vorticity values at one boundary mesh point does not make sense.

In Table 4, we give the values of «(0.5, 1.0) for several values of R, p and ¢. It is
noted that the w values generally decrease when p is increased in the class of first order
formulas. On the other hand, these values of w increase with increasing values of p or ¢
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Vorticity at the Midpoint of the Moving Wall

TABLE 1V

Revnolds Boundary Vorticity value at x = 4,y = 1
number approximation Comparable results
R . q Upwind scheme Central scheme from the literature
1 1,0 5.87 5.88
2,0 5.85 4.86
3,0 5.75 375
4,0 5.52 5.52
2,1 5.88 5.89
3,2 5.88 5.89
4,3 5.93 5.94
5.4 6.04 5.04
Woods 6.39
100 1,0 6.68 7.79 7.1376, 15 x 15 spline |
2,0 7.25 8.06 6.6876, 29 x 29 spline
3,0 6.95 7.42 6.5376, extrapolated
spline }
4,0 6.33 6.59 6.2970, 19 x 19 spline
with unequal
spacing _
2,1 6.28 7.44 {231
3,2 82 8.07 8.9i6, 15 x 15 finite |
difference j
4,3 7.48 8.60 6.696, 57 % 57 finite f
difference Y
5,4 7.73 8.57 6.548, extrapolated |
finite difference \;
126} /
Woods 6.55
1000 2,0 13.77 21.508, 17 x 17 finite
difference
2,1 20.45 16.198 65 x 65 finite
difference
3,2 19.55 14.234 17 x 17 spline
{22]
Woods 26.58
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in the class of second order formulas. The values of w(0.5, 1) however have the same
order of magnitude irrespective of the boundary approximation.

From the published results of Rubin and Graves [23] for R = 100, it is noted that
that the values of w(0.5, 1) reduces as the mesh is refined. The value of «w obtained
with extrapolated spline is 6.5376 which “improves” to 6.2970 when a spline with
unequal spacing is used. This seems to give the impression that a smaller value of
(0.5, 1) indicates improved accuracy of the overall solution. If this were to be
accepted, then our solution obtained with the (2, 1) formula is even more accurate
than that obtained with unequally spaced splines [23]. Moreover, our solutions with
the (1,0), (2, 1) and Woods’ formulas would seem to be more accurate than the
solution obtained with a 57 x 57 mesh [26] where «(0.5, 1) is 6.696.

TABLE V

Extrapolated Vorticity Values Obtained from
Numerical Solutions with (2, 1) Boundary Approximation

Boundary Vorticity values at x = 1,y =1
approximation —

2%’} R =350 R = 100
1,0 5.77 6.23
2,0 5.69 6.19
3,0 5.45 5.82
4,0 5.16 5.39
50 4.85 4.99
8,0 4.00 4.02
2,1 5.84 6.28
3,1 5.93 6.44
3,2 6.18 6.92
4,1 5.97 6.51
4,2 6.23 6.98
4,3 6.34 7.10
5,1 6.00 6.54
52 6.26 6.99
53 6.36 7.07
5,4 6.39 7.01

Woods 11.50 12.48

In order to illustrate this point further, we have taken the converged solutions for
R = 50 and 100 obtained with the “most accurate” (2, 1) boundary approximation
under consideration and used this solution to extraploate the values of w(0.5, 1) using
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equations (2.13) and (2.14) with various values of p and ¢. From Table 5 it is clear that
with appropriate choice of p and g, one could obtain very low or very high values of .
However, most of these values are equal in an order of magnitude comparison. It is
concluded that the values of vorticity at any boundary point is an unreliable parameter
to compare numerical solutions.

TABLE VI

Size of Upstream and Downstream Corner Vortices

Size of the corner vortex

Reynolds Boundary —
number approximation Upstream  Downstream
R 2, q Y, Y4 Comparabie data from the literature
10 1,0 0.071 0.051
2,0 a a Y, =009 1 =150 33
3,0 . a Y. = 0.06,h = 1/40 4]
4,0 a a
2,1 0.086 0.079
3,2 0.071 0.066
4,3 0.056 0.053
Woods 0.119 0.113
100 1,0 0.126 0.064 Y, ==0.15 Y, =0.12,F = 1/30 {3}
2,0 0.093 a
3, 0 a a
4,0 u K Y, =015Y, =008 & = 146 4]
2,1 0.136 0.073 Y, = 0.06 {16]
3,2 0.138 0.061
4,3 0.136 0.051
5,4 0.108 “
Woods 0.203 0.108
) Y, = 033 2
1000 2,0 0.328 0.283 Y, =03} 16}
Y, = 0.15}
2,1 0.564 0.435
3,2 0.554 0.557 ¥, = 0.28 {19, 251
Woods 0.644" 0.607

@ WNo corner vortex resolved in this case.
¢ Tertiary flow observed in this case.

581/31/2-9
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(¢) Sizes of Corner Vortices

Small counterrotating vortices indicating backflow have been observed, both
experimentally and numerically, in the bottom corners of the square cavity. We were
able to detect such corner vortices for Reynolds numbers as low as 1, at least with the
more accurate boundary approximations. As the accuracy of the boundary approxi-
mations reduce, the size of the corner vortices also goes down. This may be taken as a
measure of accuracy of the numerical solutions, but the accuracy would only be
qualitative. The reason is that the size of the corner vortices is measured by the
coordinates of the boundary mesh points where the vorticity is zero. In view of our
comments about the vorticity values on the boundary this parameter too cannot be
treated as a reliable parameter to compare the accuracy.

In Table 6, we present the values Y, and ¥, of the vertical distances, measured
from the bottom of the cavity, of the separation points (where w = 0) along the
upstream and downstream walls. It is noted that the values of ¥, , Y, using Woods’

TABLE VII

Stream Function Values $({) near the Singular Upstream Corner®

Reynolds Boundary Values of #{({)
number approximation Comparable results”
R D, q £ =005 = 0.2 from the literature
50 1,0 0.0177 0.0716
2,0 0.0161 0.0720 #(0.05) € (0.01,0.04) 4~ = 1/40 [15]
3,0 0.0145 0.0708 #(0.2) ~ 0.07
4,0 0.0132 0.0683
2,1 0.0184 0.0713
3,2 0.0181 0.0720
4,3 0.0174 0.0730
5,4 0.0167 0.0739
Woods 0.0231 0.0773
500 1,0 0.0239 0.0667 #0.05)=(0.01,0.03) & =120 [9]
2,0 0.0204 0.0637 $%(0.02) ~ 0.07
3,0 0.0171 0.0590
2,1 0.0251 0.0693
3,2 0.0240 0.0658
4,3 0.0224 0.0648
Woods 0.0307 0.0710

« ¢ is the nondimensional distance along the diagonal.
® The data obtained from the graphs published in [9, 15].
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formula are larger than any other values in the same class. We also noticed tertiary
flow at £ = 1000 using Woods’ formula. This phenomena was noticed with other
boundary approximations before convergence but it disappeared in the converged
solutions.

{d) Values of i near the Singular Upstream Corner

Comparison of i values at some interior mesh points which are not too close to the
boundary does provide an indication of accuracy, as discussed earlier. Similarly the
values of w can be compared although this in effect results in a comparison of the
values of a linear combination of -values at five mesh points, amplified by /2
The values of 4 near the boundaries are very small and a meaningful comparison of
these values may require a much greater precision. As noted previously, the values of
w on or near the boundary are susceptible to the choice of differentiation formula
used as well as the mesh size. In addition, slight inaccuracies in $-values get amplified
to larger amounts.

O’Brien {17] has suggested that a more critical test of a numerical solution can be
made near the upstream corner singularity, because if anything is to go wrong it
would probably happen there. This argument seems fallacious because the numericai
results are incorrect near the singularities due to the averaging processes normaily
employed in the calculations. The values of ¢ near the singular corners are very smal!
and. in our opinion, provide only an order -of magnitude information. In Table 7,
we present some values of s at the diagonal passing through the singular upstream
corner. The distance along the diagonal is given as the fraction of the total length
of the diagonal.

(&) Total Shear Force

The total shear stress on the moving wall per unit depth is given by

W

= R pe il & ot .
b= WJO # (5F) all - ' (C)’)J 1 v = *if) (w)y:l . (‘5.“)

Clearly, F is the average velocity gradient, or the average vorticity, on the movmn

ail _Althougn the value L ) O he wall are obtained bv qumerical differentiati

= = — = — = — = — > = ——=

is carr:ed out using the trapezmdal rule and the value of w at the smgular corners,
which do not enter our numerical computations, have been taken to be zero.

An examination of Table 8, reveals that the value of F consistently decreases
with a decrease in the accuracy of the boundary approximations. The central difference
schemes also produce slightly larger values of F which might be taken as an indicator
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of a slightly better accuracy of the central difference schemes. However, the values of F
obtained with Woods’ formula are substantially larger than any of the other values.
In general the Woods’ formula overestimates the values of vorticity and hence F as
will be discussed later.

Total Shear Force on the Moving Wall

TABLE VIII

Reynolds Boundary Total shear force F
number approximation Comparable results
R D, q Upwind scheme Central scheme from the literature
1 1,0 11.20 11.21
2,0 9.06 9.07
3,0 7.67 7.68
4,0 6.63 6.65 9.677, h = 1/20 [14]
2,1 12.71 12.72
3,2 11.22 11.23
4,3 10.14 10.15
5,4 9.29 9.29
Woods 14.87
10 1,0 11.14 11.23
2,0 9.04 9.09
3,0 7.66 7.69
4,0 6.65 6.66
2,1 12.63 12.75
3,2 11.16 11.25
4,3 10.10 10.17
Woods 14.75
50 1,0 11.29 11.75
2,0 9.21 9.47
3,0 7.81 7.96
4,0 6.75 6.84
2,1 12,73 13.33
3,2 11.28 11.77
4,3 10.25 10.62
5.4 9.42 9.68
Woods 14.85

Table continued
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TABLE VII—Continued

Reynolds Boundary Total shear force F
aumber approximation — Comparable resuits
R D4 Upwind scheme Central scheme from the literature
100 1,0 11.89 12.94
2,0 9.71 10.27 10,192, /7 = 120 141
3,0 8.15 8.44 11.3902 0 = 115
4,0 6.95 7.11 1770219 x 19
unequally spaced grid

2,1 13.34 14.76
3,2 11.89 12.98
4,3 10.82 11.59
5,4 9.90 10.41

Woods 15.65

500 1,0 16.70

2,0 12.51
3,0 9.63
2,1 19.04
3,2 16.72
4,3 14.38

Woods 23.07

1000 2,0 13.94 13.361, F = 1,20 114}

2,1 24.00
3,2 19.90

Woods 29.16

¢ Computed from data given in [26].

(F) Vorticity Conservation Laws

It is easy to derive the following conservation laws for the square cavity (see [8]}:

&= ([wdxdy = (5.3)
Jy
and
Jw e
§5DW ds = Q. 4\3.4)

Once the numerical solutions have been obtained the value of & can be computed
numerically. In Table 9, we give the values of © obtained by using the trapezoidal
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rule. It is noted that the values of @ are closer to unity when a more accurate boundary
approsimation is used. It is concluded that & is a reliable parameter for comparing
or ascertaining the accuracy of numerical solutions.

The second conservation law involves the values of éw/én on the boundary mesh
points. Since the vorticity values on the boundary are unreliable, determination of
the normal derivative would be further inaccurate and the use of the second <onser-
vation law does not appear very promising. Wu [28] has, however, noted that with
the first order approximations, in particular the (1, 0) formula the condition (5.4}
would be exactly satisfied whereas with the second order approximations, specificaily
the (2. 1) formula, this condition may be violated.

It may be noted from Table 9 that while almost all values of & obtained with the
(P, g) formulas are smaller than unity, those obtained with Woods™ formula are ali
larger than 1. This is an indication that the errors of the numerical solutions obtained
with Woods™ formula lie on the other side of the true solutions. This alsc explains
why the values of ¢Yimax and e obtained with Woods' formuia (Table 3) are higher
than ali other values. Such phenomena is also noticed in the splinz solutions of Rubin
and Khosla [22] and Rubin and Graves [23] where the values of fmax (£ — 100}
go down as a finer mesh is taken (see also Table 3). Similar comments apply to the
sizes of corner vortices (Table 6), stream function values near the upstream singular
corner (Table 7) and total shear force on the moving wall {Table 8). In addition,
the values of @ for # = 500 and 1000 clearly indicate the inaccuracies of the sclutions
obtained with the Woods’ formula, at least for large Reynolds numbers, compared
to those obtained with many of the first and second order formuias of the type (2,133,
(2.14).

It is noted that the values of @ for the conventional {1, 0) boundary formuia ars
exactly those predicted theoretically, @ = 1 — # — O,

{g) Velocity Profiles

Many authors [5, 6, 13, 18, 20-22, 25] have compared certain velocity profiles,
usually along some mid-section or a diagonal. Also the velocities do represent the
physical phenomena more clearly than the numerical values of ¢ and w. Calculation
of velocity values also involves numerical differentiation of one order lower than the
vorticity. In some sense the velocity profiles do provide a satisfactory method of
comparing numerical solutions. It is, however. difficult to measure accuracy using
these profiles.

6. CONCLUSIONS

We have examined a numerical procedure for solving two-dimensional Navier—
Stokes equations on a model problem of a square cavity. The values of vorticity on
the no-slip boundaries are approximated using various extrapolation formuias of
first and second order. It is found that most of these boundary approximations, for
moderate values of p and ¢, yield numerical solutions which display the expected
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characteristics of the fluid flow. At low Reynolds numbers, these solutions are even
quantitatively comparable. In general, the two point formulas (g 7 0) give more
accurate results than the one point formulas (¢ = 0). In particular, the (2, 1) formula,
which is also known as Jensen’s formula [21], gives more accurate results than any
of the other formulas examined here. This formula is also the most expensive in terms
of the number of iterations required for convergence and we recommend the use of
(3, 2) or (4, 3) formulas to obtain slightly less accurate solutions with substantially
reduced cost.

Several authors have considered Jensen’s formula and Woods’ formula and found
them to be unstable (see, e.g., [21]). However, these formulas are not unstable. They
do require a substantial amount of damping of the boundary values of vorticity and
hence are quite slow in convergence. As seen in Section 5, it is quite easy to obtain
near optimal values of the damping parameter which may be used to get the best
possible rate of convergence. In general it was found that the more accurate the
boundary approximation in terms of the truncation error, the larger the cost of
obtaining the numerical solutions.

With larger Reynolds numbers and a finer mesh, it is probable that the (2, 1)
formula would require a very large amount of damping (even larger than 99 9)).
Such damping would make the convergence extremely slow and one may look at
other approximations which are of the same order but cost much less.

We have examined a number of parameters which are often quoted in the literature
to compare various numerical solutions. A systematic study of these parameters has
been carried out in order to determine whether they are reliable indicators of accuracy.
While most of the parameters examined here give some qualitative idea of accuracy,
we have isolated the following parameters which are believed to provide a quantitative
distinction between various numerical solutions: maximum value of stream function;
total shear force on the moving wall of the cavity; and the total vorticity & defined
in Eq. (5.3). The value of vorticity at the vortex centre can also be compared but this
in essense means a comparison of a linear combination of -values in the neighborhood

of the vortex centre, amplified by 42

T . o SRR S T L 7 T =
equation [7, 10, 12] which is a special case of the Navier-Stokes equations with R = 0.
In this case, the accuracy of the numerical solution deteriorates when ( p, ¢) boundary
formulas are used with large p, ¢. Our conclusions on the suitability of certain
parameters are also based on the trends found in other published results. As an
example, the value of imax generally increase with the accuracy of the boundary
approximations of the type given here (Table 3). Similarly, the value of ¢imax increases
with the refinement of the mesh in the finite difference methods [4]. On the other hand
the value of ¢imax decreases with the refinement of the mesh in the spline methods
[22, 23]). In all cases, there is a definite trend towards a limiting value of $max . From
these observations one can safely conclude that the Woods™ formula overestimates
the {max by about 10 %.

It has so far been believed that the central difference approximation of the vorticity
transport equation (2.2) provides a higher order accuracy than the upwind difference
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scheme, at least for low Reynolds numbers. We did not find any perceptible difference
between the solutions obtained with both types of difference schemes for £ = 1/20
and R = 1, 10, 50 and 100. At higher Reynolds numbers the central difference scheme
is either nonconvergent or gives inaccurate results.

Finally, when the same problem was solved using finite element methods under
various boundary approximations of the type (2.13) and (2.14), it was found [13]
that the rate of convergence of the iterative procedure was almost independent of the
boundary approximation. In such a case it is advisable to use the (2, 1) formula.
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