
JOUKPIAL OF COMPUTATIONAL PHYSICS 31, 265-288 (1979) 

Boundary Approximations and Accuracy in Viscous Flow Computations 

MURLI M. GUPTA* AX;U RAN P. MASOIIAK 

Department of Mnthematies, Uniceruit.v uf Saskutchewatr, Saskatoon, Canada S7h 0 L+U 

Rcccived July 31, 1978 

The way in which the boundary values of the vorticity are approximated in the numerical 
solution of the Navier-Stokes equations alTect.s the rate of convcrgcnce and accuracy of the 
solutions. In this paper two classes of boundary approximations are studied. The problcrt. 
of viscous flow in a square cavity is chosen as a model. Numerical solutions are obtained 
for Reynolds numbers 1, IO, 50, 100, 500 and 1000 and the itcrativc procedure is found to 
become faster with a decrease in the local accuracy of the bouodary approximation. Detailed 
comparisons are carried out in order to dctcrmine accuracy of various numerlcal solutions. 
Several parameters, based on the numerical soluiious, are found to vary monotonically and 
approach certain limiting values. These parameters are considered to bc reliable iudicaarols 

Of accuracy and are recommended for comparison of numerical results obtained by differenr 
methods. 

INTRODUCTION 

Several papers have appeared in the last 15 years on the numerical solution of the 
Navier-Stokes equations governing the flow of a viscous incompressible fluid. The 
solution procedure consists of discretitine the differential equations and boundary 
conditions over the fluid flow region and solving the resulting system of algebraic 
equations. Finite difference methods are generally employed in the discrctization 
although lately finite element methods have also been usrcl. For two-dimensional and 
also for the axi-symmetric flows it is convenient to introduce stream function and 
vorticity as dependent variables. The equation of continuity is autcmatically satisfied 
and the resulting system consists of two coupled nonlinear equations which are solved 
numerically by some iterative procedure. 

Aside from the fact that these coupled equarions are nonlinrar, there are sevcrai 
other difficulties associated with their solution. The major difficulty is that the values 
of vorticity on no-slip houndaries are not known a priori, while these values are 
needed in order to solve the discretizcd problem. Since there are no analytic solutions 
available for a physically interesting problem of viscous flow, it is difficult to ascertain 
the accuracy ol‘the numerical solutions. The geometry of the problem also introduces 
additional difficulties in the numerical method. Some authcrs prefer the USC 01 
velocity-pressure formulation of the Navier-Stokes equations in order to avoid the 
difficulties arising from the introduction of vorticity. However, the pressure equation 
is complicated and introduces additional difficulties. 
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266 GUPTA AND MANOHAR 

In order to test a numerical method, it is customary to choose a simple model 
problem. The flow of a viscous incompressible fluid in a rectangular cavity is often 
chosen for this purpose. Mathematically, this choice is rather unfortunate because 
of the corner singularities. Several numerical methods have been proposed in the 
literature. These methods differ in the choice of discretization schemes, the boundary 
approximations used to define vorticity on no-slip walls, and the methods used to 
solve the resulting systems of algebraic equations. The numerical solutions are 
usually compared in terms of the values of stream function or vorticity at some 
representative points and also by comparing the values of certain parameters of the 
flow. 

It has now been established that central difference approximations provide con- 
vergent and accurate numerical solutions only for small values of the Reynolds 
numbers. For large Reynolds numbers, some upwind differencing is essential. 
However, the effect of various boundary approximations on the overall accuracy 
has not been studied systematically. From the study of the biharmonic equation, 
which is a special case of the Navier-Stokes equations with zero Reynolds number, 
it is known that the boundary approximations significantly affect the accuracy of the 
numerical solution as well as the rate of convergence of the overall procedure 
[7, 10, 121. 

While most authors have used the conventional boundary approximation based 
upon a reflection principle, some others have considered higher order approximations. 
Many authors have encountered difficulties with second order boundary approxi- 
mations. Due to these difficulties the second order formulas have been termed unstable 
and the conventional formula is generally recommended [20]. 

In this study we examine two classes of boundary approximation formulas. These 
formulas have been successfully used for the solution of the biharmonic equation 
[7, 10, 121. In the class of first order formulas, the boundary vorticity is defined in 
terms of the given data and the stream function values at one point inside the flow 
region. For the second order formulas, the stream function values at two points inside 
the flow region are used to define the boundary vorticity. Effect of these boundary 
approximation formulas on the accuracy of the numerical solutions as well as on the 
rate of convergence of the numerical procedure is discussed. 

In order to compare the accuracy of various numerical solutions, we consider 
several parameters such as the vortex centre, the maximum value of the stream 
function, the wall vorticity, the corner vortices and the shear force on the top wall of 
the cavity. Detailed comparisons are carried out for various Reynolds numbers and 
comments are made on the suitability of these parameetrs as reliable indicators of 
accuracy. 

Numerical solutions of the cavity flow problem are obtained using a uniform mesh 
(lz = 0.05) for Reynolds numbers 1, 10, 50, 100, 500 and 1000 with various boundary 
approximations. In addition, the second order boundary formula due to Woods [27] 
is also used for comparisons. Although most of the numerical solutions given here 
have been obtained by using upwind difference methods, some solutions at low 
Reynolds numbers have also been obtained using the central difference scheme. 
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It is concluded that if one desires to obtain a crude approximate solution of the 
Wavier-Stokes equations, it can be obtained very cheaply using an appropriate 
boundary approximation formula. We also discuss why some second order formulas 
are considered unstable and indicate how a suitable choice of boundary formulas can 
yield a numerical solution which is comparable in accuracy but easier on computing 
budgets. 

2. THE CAVITY FLOW PROBLEM 

The flow of a viscous fluid in a square cavity is governed by the following Navier-- 
Stokes equations: 

The boundary conditions are given by 

J, = 0, 
Z$ 
_ = 0, hx 

when s = 0 or 1, 

WJ $=O, -=() 
21’ ’ 

when j: = 0, 

-1, when y = I. 

In order to solve these equations numerically, the square cavity is covered by a 
uniform mesh of width k. The set of mesh points is defined by 

Dt, = ((xi , yj): xi = $2, yj = jh; i, j - 1, 2 ,..., II -- i; tzlz = 1’;. 

The set of boundary mesh points is denoted by a& . The finite difference approxi- 
mation of the stream function equation is given by 

A~$jj = lZ~e~~~,j+l + #j,jel f $j-l,j + $hjLl.j - 4#jj] = Wj;, 1 < i,,j < t2 - i 

The upwind scheme for the vorticity equation (2.2) is given by 

wrhere 
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and 

%j = Ci+Lj - $i-l,j 3 Pij = #i&-l - +<,+I * 

The boundary values of # and w must be prescribed in order to solve the systems of 
equations (2.4), (2.5). The boundary values of Z/J are 

$, = 0, ixi , uj) 6 a& , (2.6) 

whereas the boundary values of w are defined in terms of # (W .E -O#) and may be 
prescribed as 

~ij = --d,$~ij 7 (xi 3 uj) E 8Dh a (2.7) 

Assuming (xi , vj) lies on the left boundary x = 0, then 

wOi = --h-2E#lj + +-IA + #o,iir + #0,&l - 4#%,i1. (2.8) 

The value of z,-~,~ is undefined in the above expression as the point (x-~, ~7~) lies 
outside the square cavity. Since the normal derivative &/ax is known on the boundary, 
the following reflection formula may be used to define #-l,i: 

or 
41,-l,, = #l,j - Z/1(+$),,, + O(113j. (2.9) 

Substitution of (2.9) into (2.8) yields the following “conventional approximation”: 

Similar expressions may be written for the other parts of the boundary. The approxi- 
mation (2. IO) has been widely used in the litearture [4, 14, 15, 17, 20, 21, 24, 261. 

Some authors [9, 16, 20, 241 divide the set Dh of interior mesh points into two sets 
Dh,L and Dhs2, where Dlr,l contains mesh points adjacent to the boundary (at a 
distance h) and Dll,, = Dn - Dh,l, and solve different algebraic problems on the two 
sets of mehs points. As an example, Greenspan [9] solved the stream function 
equation (2.4) only on DR,I (i.e., for 2 < i, j < II - 2) and defined the #-values on 
Dh.l using interpolation such as 

#lj = a+*; + 3#o,i -I- 24&Jo,jl. (2.11) 

It is noted that the boundary value of woj depends on c,!+~ from (2.10); the value of t,!~ 
depends upon & from (2.11). The combined effect is that wgj is defined by the fol- 
lowing formula 

%j = -h-‘[3Q*j - -40, + #O,j+l + #&j-J, - h(#&l,j]. (2.12) 
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Observe that the approximation for qj given by (2.10) depends upon the value of 
$l,j and the known data. Similarly, the approximation (2.12) depends upon the value 
of zJ~,~ . In general it is possible to define a first order approximation to ogj in terms 
of $,? and the known data by a formula called the (p, 0) formula given by 

where p is a positive integer. Orszag and Israeli [IS] have mentioned this formula as 
a possible generalization of Thorn’s formula for a one-dimensional model problem. 

A second order approximation, denoted symbolically as the (p, q) formula, is 
given bl 

where p, q are positive integers, p # q, and cx = p-2q-z(p - q)-‘. The (p, q) formula 
defines the values of w~,~ in terms of two #-values at (x, i uj) and (x, , yJLI besides the 
known data. In particular, the (2, 1) formula is given by 

This formula has been used by several authors. Roache 1311 calls it Jensen’s formula. 
It has also been called Briley’s formula. Wu [28] recommends the use of second order 
boundary approximations but also notes that with such formulas the principle of total 
vorticity conservation may be violated. Several authors (see [2f]) have called the 
formula (2.15) unstable. In fact the rate of convergence of the iterative scheme is 
slow when (2.15) is used. We discuss this matter in Section 5. 

Some other second order formulas from the class (2.14) are: 

The (3, 1) formula: 

Thz (3, 2) formula: 

The (4, 3) formula: 

Qrszag and Israeli have mentioned some (2, 1) and (3, I) formulas for their one- 
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dimensional model problem [IS, Eqns. 38, 391. However, their formulas seem to be of 
first order in general. 

The boundary approximations given by the class of formulas (2.13) and (2.14) 
include most of the formulas used by other authors. An exception is the so called 
Woods formula given by 

w 0,j = -h-“[3#l,j $- $O,j+l + #o,j-1 - j$b(j,j -- 3W#x)o,j] + &l,j . (2.19) 

This formula has been used by several authors [l, 2, 3,21, 23, 271. It defines the 
boundary vorticity in terms of #,,,; and 0l.j besides the known data. This formula 
has a truncation error of order h2 and one expects to obtain more accurate results 
using Woods’ formula compared to those obtained using the conventional (1,O) 
formula or any other first order formula of the class (2.13). Since the accuracy of 
Woods’ formula is of the same order as those of formulas of the class (2.14), we 
expect the solutions to be comparable. In order to make our discussion complete, 
we also give results obtained using Woods’ formula. Intuitively the formula (2.19) 
may appear better than the class of formulas (2.14) because of the inclusion of 
additional information. However, this is not the case as will be shown here. 

3. ITERATIVE PROCEDURE 

The solution of the discrete Navier-Stokes equations (2.4) and (2.5) is obtained by 
the following iterative procedure: 

(a) Start with some initial approximation wcrn) of the vorticity with uz = 0. 
If no such approximation is available, set w(“) = 0. 

(b) Solve the stream function equation (2.4) to obtain $JfF~+l) from: 

&&+l) = (m) 
-Wij . (3.1) 

(c) Determine the boundary values of the vorticity from the formula (2.13) 
or (2.14). Call these values &P+l). Obtain the modified boundary values w(‘~I+I) 
using a smoothing (or damping) parameter 6: 

W("+l) = (I _ q&p+l) + &.Jrnl, 0<6<1. (3.2) 

(d) Solve the vorticity equation (2.5) to obtain w(‘~+I) from 

&#J~jmfl) = 0. (3.3) 

(e) Repeat the steps (b) to (d) for m = 1, 2,... until some convergence criterion 
is met. 

The iterative steps (b) to (d) form an “outer iteration.” If the equations (3.1) or (3.3) 
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are solved by an iterative procedure, then the steps (b), (d) are called inner iterations 
for #, co. 

1. COMPUTATIONAL PRELIMINARIES 

In general it is easy to solve the discrete Poisson equation (3. I) by using the succes- 
sive overrelaxation method or some other iterative procedure provided the region 
under consideration is rectangular and some optimal relaxation parameters are 
available a priori. This, however, is not possible for the equation (3.2). Direct so’tvers 
are now available which are quite efficient and use of these solvers eliminates the 
search for optimal relaxation parameters. Since our basic interest is to test various 
boundary approximations, we chose to eliminate the uncertainty arising from the 
inner iterations in order to make an objective comparison of our final results. 
-4lthough many of the direct methods are computationally as fast as the iterative 
merhods, the storage requirements become prohibitive when iz is small. 

PL nonzero value of the damping parameter 6 in (3.2) is essential for the convergence 
of the numerical procedure (see [7, lo] for proof of the case R = oj. For an estimate 
of 6, we first determine the growth factor p of the outer iterations. The value of ,3 is 
estimated by using 6 == 0 fo r a small number of iterations in the procedure of 
Section 3 and computing 

The norm used in (4.1) is the maximum norm II $J, = mas , ~cj 1. Let ,C =- 
CP - ~N(P -t 9. F or convergence of the outer iterations, 8 should be chosen [7] 
such that 

and a near optimal value of 6 is given by 

8 opt P = __- p+2’ 

Most of our computations were started with 
necessary. The outer iterations were stopped when 

I/ W (77) _ w(“-1’ ,: < E. 

This convergence criterion also guarantees 

(1 #(rr) - #i+l) ;I ( E, 

The value of E was chosen to be lo-*. 

(4.3) 

0, although this was not 

(4.4) 

(4.. 5) 
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5. NUMERICAL RESULTS 

We have obtained numerical solutions for R = 1, 10, 50, 100, 500 and 1000 with 
a mesh size h = l/20 using various boundary approximations. Some results for h = 
l/l0 are available from a previous study [ll]. Solutions have also been obtained 
by using the central difference scheme for low Reynolds numbers (R = 1, 10, 50, 100). 

We found that with a fixed boundary approximation the growth factors p of the 
outer iterations remained virtually constant for the range of Reynolds numbers 
considered by us. In Table 1, we give representative values of p, p and &t defined in 
Eqs. (4.1)-(4.3). It is noted that values of p, p and 6 decrease with the increasing values 
ofp when the (p, 0) formula (2.13) is used and with increasing values ofp, q when the 
(p, q) formula (2.14) is used to define the boundary vorticity. The effect of decreasing 
&,t is to increase the rate of convergence of the outer iterations. Thus, one could 
expect a faster convergence when boundary formulas with larger values of p and q 
are used. 

TABLE1 

Growth Factors, Stability Range, and Optimum Parameters 

Lower bound Optimum 
Boundary Growth for smoothing smoothing 

approximation factor parameter parameter 
P, 4’” P P 6 

130 10.6 0.8276 0.84 

270 4.86 0.6587 0.71 

3,o 2.98 0.4975 0.60 
430 2.07 0.3485 0.51 

2, 1 16.25 0.8841 0.89 
3,2 8.6 0.7917 0.81 

4, 3 5.75 0.7037 0.74 

5,4 4.23 0.6176 0.68 

6, 3 4.80 0.6552 0.71 

7, 2 6.43 0.7308 0.76 

Woodz 10.8 0.8305 0.85 

a 4 = 0 indicates the first order boundary approximation (2.13), q # 0 indicates the second order 
boundary approximation (2.14). 

Woods formula given by Eq. (2.19). 

In Table 2, we give the values of 6 actually used and the number of iterations 
required for convergence. Clearly, the number of iterations go down, sometimes 
even drastically, with an increase in value of p or q. It is anticipated that with larger 
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TABLE II 

Damping Parameters S and Number of Iterations N 

Reynolds number R 
_______ ~- 

Boundary Aopt 10 50 100 500 
approximation from ~- -~___~~ 

P. r/ Table I d N 6 N 8 N 6 N 

1, 0 0.84 0.85 46 0.85 50 0.85 63 0.86 137 

2, 0 0.51 0.695 43 0.66 36 0.695 31” 0.50 73 

370 0.60 0.58 16” 0.58 18 0.58 19” 0.60 51 

‘-60 0.51 0.50 12” 0.50 15 0.50 16” - 

2, 1 0.89 0.905 69 0.89 71 0.89 89 0.91 202 

3,2 0.81 0.825 43 0.81 42 0.83 60 0.84 =53 1’ 

4, 3 0.74 0.73 51 0.73 30 0.73 34” 0.75 74 

5, 4 0.68 - 0.68 20” 0.68 26” - 

Woods 0.85 0.85 45 0.85 45” 0.85 66” 0.85 124” 

a The initial values of wCO) were not taken to be zero. Thus these numbers are not comparable 
with the other data, but are presented for the sake of completeness. 

values ofp, q the boundary approximations and hence the numerical solutions become 
progressively less accurate. This is borne out by our experience with the biharmonia 
equation and confirms the obvious that less accurate results are cheaper to obtain. 

It is not possible to make statements about the accuracy of the numerical solutions 
in absolute terms, because no analytical solutions of the problem are available. On the 
other hand, from our experience with the biharmonic equation it is possible for us 
to select certain representative values of the solution and also certain parameters 
which can provide a good indication of the relative accuracies of the numerical 
solutions. 

(i) Qualiru:il;e Comparisons 

The stream function and vorticity profiles obtained with different bounda.ry 
approximations are all qualitatively correct and compare well with the profiies 
published elsewhere. As an example, the stream function and vorticity profiles for 
R = 50. h = l/20 obtained with six different boundary approximations of the type 
(2.13), (2.14) all look alike [II]. 

If only qualitative results are needed, it is advisable to use larger values of p and Q 
in the boundary approximations (2.13), (2.14). These formulas are very economicai 
compared to the conventional method. We do not, however, recommend the use of 
extremely large values of p and 4 in obtaining these solutions. As in the case of the 
biharmonic equation [7, 10, 121, we believe that the second order boundary formulas 
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could be used with p, q as large as desired without seriously affecting the accuracy 
provided that pq = 0(1/h). 

(ii) Quantitatice Comparisons 

The numerical procedure under consideration has previously been applied to the 
biharmonic equation in a square under a variety of boundary conditions [7, 121. 
Since exact solutions of the biharmonic equation are known in most cases, it is 
possible to make specific comments about the accuracy of various numerical solutions. 
In particular, the overall accuracy of the numerical solutions of the biharmonic 
equation increases with an increase in the accuarcy of the boundary approximations. 
Here overall accuracy is measured in terms of the maximum error at the mesh points. 
The second order formulas (2.14) yield more accurate results than the first order 
formulas (2.13), at least for moderate values ofp and q. For the mesh sizes of the order 
of l/20 and l/25 one could not, in general, expect a pointwise accuracy >lOml in # 
and >lO-” in w when the convergence criteria (4.4) (4.5) are used with E = 10-4. 
We believe that a similar trend exists for the Navier-Stokes equations, at least for 
moderate Reynolds numbers. To expect any better accuracy in terms of the values of 
stream function and vorticity seems pointless to us unless both the mesh size is 
reduced and the convergence criterion is modified. With this in mind, we now 
examine several parameters which have been quoted in the literature to compare 
various numerical solutions. 

(a) kfasinmn Value of #, the Vortex Centre and Vorticity at Vortex Centre 

The point at which the value of 4 attains its absolute maximum is called the centre 
of the primary vortex (vc). We denote the coordinates of this point by (X: p) and 
values of 16, o at the vortex centre by z/,, and wVc . The values of these parameters 
are presented in Table 3 for various R, p and q. It may be noted that the location of 
the vortex centres given here are limited by the mesh size used in these calculations 
and the actual vortex centre may lie anywhere in the square (X & h, J 5 h). The 

- - 
results in Table 3 clearly show that (x, 4’) is virtually independent of the boundary 
approximation and hence is an unreliable parameter to compare the accuracy of 
various numerical solutions. 

The variations in the values of z,& as given in Table 3 are not very large at small 
Reynolds numbers. However, these variations increase with the increase in the 
Reynolds number. Moreover, the values of $,, vary monotonically with the accuracy 
of the boundary approximations and J/ vc appears to be a reliable indicator of 
accuracy. 

It may be noted that since (X, j) does not represent the true centre of the primary 
vortex (resolution errors of order h in each direction), the values of J,L at (.Y, 9) also 
may not be the true values of &,,, in the cavity. In comparing the results obtained 
using different mesh sizes, one must allow for this variation and it might be more 
appropriate to compare the values of # at a fixed point which may be in the vicinity 
of the vortex centre. 
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TABLE III 

t’orrex Center, Maximum Stream Function, and Vorricity at the Vortex Center. 

Upwind Centrai 
Reynolds Boundary Vortex scheme scheme Comparable 

number approximation center -~ results from 

(0.5,0.75) 0.0993 3.00 0.0993 3.00 

(0.5,0.75) 0.0982 2.95 0.0982 2.95 

(0.5, 0.75) 0.0955 2.86 0.0955 2.84 

(0.5,0.75) 0.0918 2.70 0.0917 2.70 

2, i (0.5, 0.75) 0.0995 3.02 0.0995 3.02 

3, 2 (0.5,0.75) 0.1000 3.03 0.1000 3.03 

4, 3 (0,5,0.75) 0.1006 3.05 0.1005 3.05 

574 (03, 0.75) 0.1008 3.05 0.1008 3.05 

Woods (0.5, 0.75) 0.1082 3.33 

50 170 
2, 0 

3.0 

4,o 

2, 1 

3-2 

4, 3 

574 

Woods 

(0.45,0.75) 0.1000 3.00 0.0981 3.17 

(0.4,0.75) 0.0979 3.10 0.0959 3.05 

(0.4,0.75) 0.0942 2.90 0.0921 2.84 

(0.4,0.75) 0.0897 2.69 0.0877 2.63 

(0.45,0.75) 0.1006 3.03 0.0987 3.21 

(0.45,0.75) 0.1011 3.05 0.0991 3.23 

(0.4,0.75) 0.1009 3.25 0.0990 3.21 

(0.4,0.75) 0.1002 3.20 0.0981 3.15 

(0.45, 0.75) 0.1101 3.40 

100 170 (0.40,0.75) 0.0985 3.05 0.0953 3.28 

2, 0 (0.35, 0.75) 0.0945 3.18 0.0914 3.02 

370 (0.35,0.75) 0.0901 2.87 0.0868 2.68 

4.0 (0.35, 0.75) 0.0854 2.59 0.0805 2.39 

2, : (0.4, 0.75) 0.1000 3.13 0.0971 3.36 
3,2 (0.4, 0.75) 0.0997 3.13 0.0965 3.37 

4, 3 (0.4,0.75) 0.0979 3.05 0.0949 3.28 
5. 4 (0.35,0.75) 0.0959 3.28 0.0928 3,11 

Woods (0.4,0.75) 0.1095 3.57 

the literature 

+&,,=0.0995, iz = 1 20 

&n,,=O.lOl, 11-1.40 

&,,3s=0.1032, h=IZO 

4&%,=0.1015, h=1,20 

+,,,=0.0955, h= l/201 
=0.1022, h=l:‘50 i 

w,.,=3.136, k=1.!20 
i 

~3.145, h=l/50 ! 

$msz=0.1026, h=1;‘50i 
w,,=3.155, h=!;SO ? 

123; 
[ 0.1040, extrapolated 
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TABLE III-Conrinued 

Reynolds Boundary Vortex Upwind scheme 
number approximation Center Comparable results from 

%C the literature R 

500 

1000 

P> 4 & J-9 $*a, 

LO (0.3, 0.75) 0.0721 

293 (0.3, 0.75) 0.0687 

320 (0.3,0.65) 0.0693 

2, 1 (0.3, 0.75) 0.0791 

372 (0.3, 0.8) 9.0707 

43 (0.3, 0.75) 0.0680 

Woods (0.3, 0.8) 0.0799 

330 (0.3,0.75) 0.0541 
2,1 (0.3, 0.8) 0.0599 

322 (0.25,O.S) 0.0520 

Woods (0.25,0.85) 0.0587 

2.93 

2.00 $km+x = 0.105,il = I/20 [91 
1.69 

2.57 

2.92 

2.85 

3.73 

1.76 &.x,x = 0.0812, /z = I/Sol r31 
2.63 = 0.0691,/z = 1/‘3Oj 

3.31 &n,, = 0.0971, h = I/20 I141 

4.13 

The values of vorticity at the vortex centre are more sensitive to the boundary 
approximations. It may be noted from Table 3 that the wFc values decrease with the 
decrease in the accuracy of the first order boundary approximation (2.13), and they 
increase with the decrease in the accuracy of the second order boundary approxi- 
mation (2.14). The true values of wVc probably lie between the values obtained with 
the (1,O) and the (2, 1) formulas. It must be noted that the values of U.I may not be 
accurate beyond at most one or two decimal places for the mesh size used here and 
to read in any more in the results might be misleading. We believe that wVC should be 
used with caution in comparison of various numerical solutions. In some sense it 
indirectly implies comparing the values of the stream function i.e., #,, . 

(b) Some Vorticity Values on the Boundaries 

Some authors quote the value of the vorticity at the midpoint (0.5, 1) of the moving 
wall. The values of vorticity on the boundary are obtained from extrapolation formulas 
involving the values of # at neighboring mesh points. In effect this is a process of 
numerical differentiation and the results strongly depend upon the formula used 
and the mesh size. The values of zj near the boundary are small and erorrs in these 
values are amplified by a factor 1~“. Thus a comparison of various numerical solutions 
on the basis of vorticity values at one boundary mesh point does not make sense. 

In Table 4, we give the values of ~(0.5, 1.0) for several values of R, p and 4. It is 
noted that the UJ values generally decrease whenp is increased in the class of first order 
formulas. On the other hand, these values of w increase with increasing values ofp or q 
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TABLE IV 

Vorticity at the Midpoint of the Moving Wall 

Reynolds Boundary 
number approximation 

R P, 4 

Vorticity value at x = $-, JJ = : 

Upwind scheme Central scheme 
Comparable resulrs 
from the literature 

1 190 
2, Q 
3,0 

4, Q 

2, 1 
3,2 

4, 3 
54 

Woods 

100 130 6.68 7.79 
2, Q 7.25 8.06 
330 6.95 7.42 

4 Q 6.33 6.59 

2, 1 6.28 7.44 
3.2 6.82 8.07 

433 7.48 8.60 

Woods 6.55 

2,o 

2, 1 

332 

Woods 

13.77 

20.45 

19.55 

26.58 

5.87 5.85 
5.85 4.86 
5.75 5.75 
5.52 5.52 

5.88 
5.88 
5.93 
6.04 

6.39 

5.89 
5.89 
5.94 
6.04 

7.73 8.57 

7.1376, 15 x 15 spline i. 
6.6876,29 x 29 spline 
6.5376, extrapolated 

spline 
6.2970, 19 x 19 spline 

with unequal 
spacing 

[231 
8.916, 1.5 x 15 finite \ 

difference 
6.696, 57 x 57 finite 

difference 
6.548, extrapolated 

finite difference 
I261 

21.508, 17 x 17fiinnite 
difference 

16.198 65 x 65finite 
dif?erence 

14.254 17 x 17 spline 
[22] 
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in the class of second order formulas. The values of ~(0.5, 1) however have the same 
order of magnitude irrespective of the boundary approximation. 

From the published results of Rubin and Graves [23] for R = 100, it is noted that 
that the values of 40.5, 1) reduces as the mesh is refined. The value of w obtained 
with extrapolated spline is 6.5376 which “improves” to 6.2970 when a spline with 
unequal spacing is used. This seems to give the impression that a smaller value of 
~(0.5, 1) indicates improved accuracy of the overall solution. If this were to be 
accepted, then our solution obtained with the (2, 1) formula is even more accurate 
than that obtained with unequally spaced splines [23]. Moreover, our solutions with 
the (1, 0), (2, 1) and Woods’ formulas would seem to be more accurate than the 
solution obtained with a 57 x 57 mesh [26] where 40.5, 1) is 6.696. 

TABLE V 

Extrapolated Vorticity Values Obtained from 
Numerical Solutions with (2, 1) Boundary Approximation 

Boundaq Vorticity values at x = +, y = 1 
approximation -__ 

P7 4 R = 50 R = 100 

190 5.77 6.23 

2,o 5.69 6.19 

3,o 5.45 5.82 

490 5.16 5.39 
50 4.85 4.99 

830 4.00 4.02 

2, 1 5.84 6.28 

391 5.93 6.44 

3,2 6.18 6.92 

4, 1 5.97 6.51 

4,2 6.23 6.98 

4, 3 6.34 7.10 

5, I 6.00 6.54 

572 6.26 6.99 

5, 3 6.36 7.07 

534 6.39 7.01 

Woods 11.50 12.48 

In order to illustrate this point further, we have taken the converged solutions for 
R = 50 and 100 obtained with the “most accurate” (2, 1) boundary approximation 
under consideration and used this solution to extraploate the values of ~(0.5, 1) using 
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equations (2.13) and (2.14) with various values ofp and CJ. From Tab!e 5 it is clear that 
with appropriate choice of p and (I, one could obtain very low or very high values of CU. 
However, most of these values are equal in an order of magnitude comparison. It is 
concluded that the values of vorticity at any boundary point is an unreliable parameter 
to compare numerical solutions. 

TABLE VI 

Size of Upstream and Downstream Corner Vortices 

number approximation Upstream 
R P> (7 YU 

__- __- 

Reynolds 
Size of the corner vortex 

Boundary - 
Downstream 

Yd 

100 

1000 

10 I,0 
2,o 

330 
40 

0.071 
II 
” 
u 

2, 1 0.056 

3, 2 0.071 
4, 2 0.056 

Woods 0.119 

120 
2,o 
3,o 
4.0 

0.126 
0.093 

cz 
u 

2, 1 0.136 
3,2 0.138 
4, 3 0.136 
5, 4 0.108 

Woods 0.203 

2, 0 0.328 

2, I 
3, 2 

Woods 

0.564 0.435 
0.5$4 0.557 

0.644” 0.607b 

0.051 
0 

n 

0.079 
0.066 
0.053 

0.113 

0.064 

a 

0.073 
0.061 
0.051 

(I 

0.108 

0.283 

Comparable data from the literature 

Y, = 0.09, i2 = l:jO [3j 
?;, = 0.06, h = 1.40 !Jj . _ 

r,, = 0.33 13. 

v,, = 0.3 i [i6] 
Y, = O.lS! 

I-:, = 0.28 [Is, 251 

o No corner vortex resolved in this case. 
ii Tertiary flow observed in this case. 
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(c) Sizes of Comer Vortices 

GUPTA AND MANOHAR 

Small counterrotating vortices indicating backflow have been observed, both 
experimentally and numerically, in the bottom corners of the square cavity. We were 
able to detect such corner vortices for Reynolds numbers as low as 1, at least with the 
more accurate boundary approximations. As the accuracy of the boundary approxi- 
mations reduce, the size of the corner vortices also goes down. This may be taken as a 
measure of accuracy of the numerical solutions, but the accuracy would only be 
qualitative. The reason is that the size of the corner vortices is measured by the 
coordinates of the boundary mesh points where the vorticity is zero. In view of our 
comments about the vorticity values on the boundary this parameter too cannot be 
treated as a reliable parameter to compare the accuracy. 

In Table 6, we present the values Y, and Yd of the vertical distances, measured 
from the bottom of the cavity, of the separation points (where w = 0) along the 
upstream and downstream walls. It is noted that the values of Y, , Y, using Woods’ 

TABLE VII 

Stream Function Values #(5) near the Singular Upstream Corner” 

, 

- 

Reynolds Boundary 
number approximation 

R P. cl 

50 l,O 

-70 
3,o 
40 

2, 1 
3,2 
4,3 
5,4 

Woods 

500 1,O 
2,o 
3,o 

2,l 
3,2 
4,3 

Woods 

Values of #(<) 

[ = 0.05 5 = 0.2 

0.0177 0.0716 
0.0161 0.0720 
0.0145 0.0708 
0.0132 0.0683 

0.0184 0.0713 
O.OlSl 0.0720 
0.0174 0.0730 
0.0167 0.0739 

0.0231 0.0773 

0.0239 0.0667 
0.0204 0.0637 
0.0171 0.0590 

0.0251 0.0693 
0.0240 0.0658 
0.0224 0.0648 

0.0307 0.0710 

Comparable results!’ 
from the literature 

____ 

lJ(O.05) E (0.01,0.04) h = l/40 1151 
q.J(O.2) - 0.07 

#(0.05) E (0.01,0.03) h = 1 ‘20 [9] 
#(0.02) ,- 0.07 

u 5 is the nondimensional distance along the diagonal. 
o The data obtained from the graphs published in [9, 151. 
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formula are larger than any other values in the same class. We also noticed tertiary 
flow at R = 1000 using Woods’ formula. This phenomena was noticed with other 
boundary approximations before convergence but it disappeared in the con\ferged 
solutioas, 

Comparison of $ values at some interior mesh points which are not too close to the 
boundary does provide an indication of accuracy, as discussed earlier. Similarly nhe 
values of w can be compared although this in effect results in a comparison of the 
values of a linear combination of #-values at five mesh points, amplified by Am”. 
The values of JI near the boundaries are very small and a meaningful comparison of 
these values may require a much greater precision. As noted previously, the values of 
w on or near the boundary are susceptible to the choice of differentiation formuh 

used as well as the mesh size. En addition, slight inaccuracies in #-values get ampiified 
to larger amounts. 

07Erieu [l?] has suggested that a more critical test of a numerical solution can be 
made near the upstream corner singularity, because if anything is to go wrong I; 
would probably happen there. This argument seems fallacious because the numericai 
results are incorrect near the singularities due to the averaging processes normally 
employed in the calculations. The values of $J near the singular coraers. are very s;maii 
and. in our opinion, provide only an order .of magnitude information. tn Table 7, 
we present some values of I,/J at the diagonal passing through the singular upstream 
corner. The distance along the diagonal is given as the fraction of the total length 
of the diagonal. 

The total shear stress on the moving wall per unit depth is given by 

which can be nondimensionalized as F = FR/u,‘ap. Then F is given by 

Clearly, F is the average velocity gradient, or the average vorticity, on the moving 
wall. Although the values of w on the wall are obtained by numerical differentiation 
and hence are unreliable pointwise, the integral of these values is a reliable parameter. 
In Table 8, we present the values ofF for various values of R, ~7 and q. The integration 
is carried out using the trapezoidal rule and the value of w at the singular corners, 
which do not enter our numerical computations, have been taken to be zero. 

An examination of Table 8, reveals that the value of F consistently d.ecreases 
with a decrease in the accuracy of the boundary approximatiocs. The central difference 
schemes also produce slightly larger values of F which might be taken as an indicaeor 
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of a slightly better accuracy of the central difference schemes. However, the values of F 
obtained with Woods’ formula are substantially larger than any of the other values. 
In genera1 the Woods’ formula overestimates the values of vorticity and hence F as 
will be discussed later. 

TABLE VIII 

Total Shear Force on the Moving Wall 

Reynolds Boundary Total shear force P 
number approximation Comparable results 

R P, 4 Upwind scheme Central scheme from the literature 
-- 

1 LO 11.20 11.21 
230 9.06 9.07 
330 7.67 7.65 
4,o 6.65 6.65 9.677, h = 1,‘20 1141 

2, 1 12.71 12.72 
332 11.22 11.23 
4, 3 10.14 10.15 
54 9.29 9.29 

Woods 14.87 

10 170 
290 
330 
430 

2, 1 

3,2 
433 

Woods 

11.14 11.23 
9.04 9.09 
7.66 7.69 
6.65 6.66 

12.63 12.75 
11.16 11.25 
10.10 10.17 

14.75 

50 190 11.29 13.75 
290 9.21 9.47 
3,o 7.81 7.96 
4,o 6.75 6.84 
2,1 12.73 13.33 
3,2 11.28 11.77 
4, 3 10.25 10.62 
534 9.42 9.68 

Woods 14.85 

Table continued 
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TABLE VIII-C’onfitzued 

x-5 

Reynolds Boundary Total shear force P 
number approximation __ _____ .~ Comparable resu!ts 

R P> Y Upwind scheme Central scheme from the literature 

100 I,0 
2,0 

3, 0 

4.0 

500 

1000 

2, 1 

3,2 

473 
5,4 

Woods 

1,O 16.70 

230 12.51 

3,O 9.63 

2, 1 19.04 

3,2 16.72 

493 14.38 

Woods 23.07 

2,0 13.94 

2, 1 24.00 

332 19.90 

Woods 29.16 

11.89 
9.71 
8.15 
6.95 

13.34 
11.89 
10.82 
9.90 

15.65 

12.94 
10.27 

8.44 
7.11 

14.76 
12.98 
11.59 
10.41 

10.192, I7 = 1’20 !14] 

il.39,“Ii = 1’15 
17.71,” 19 x 19 
unequally spaced grid 

13.361,k = 1,‘20 [lb] 

lb Computed from data given in [26]. 

(f) Vorticity Consrrt~ation Laws 

It is easy to derive the following conservation laws for the square cavity (see [8]): 

and 

Once the numerical solutions have been obtained the value of G can be computed 
numerically. In Table 9, we give the values of cij obtained -by using the trapezoidal 
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rule. ft is noted that the values of 6 are closer to unity when a more accurate boundary 
approximation is used. It is concluded that 5 is a reliable parameter for comparing 
or ascertaining the accuracy of numerical solutions. 

The second conservation law involves the values of Zw!&: on the boundar:: mesh 
points. Since the vorticity values on the boundary are unreliable, determination of 
the normal derivative would be further inaccurate and the use of the second conscr- 
vation law does not appear very promising. Wu [28] has, however, noted that with 
the first order approximations, in particular the (1, 0) formula the condition (5.4’ 
would be exactly satisfied whereas with the second order approximations, speciiicaliv 
the (2, 1) formula, this condition may be violated. 

It may be noted from Table 9 that while almost ah values of L;J obtained with the 
(p, q> formulas are smaller than unity, those obtained with Woods’ formula are all 
?arger than 1. This is an indication that the errors of the numerical solutions obtained 
with Woods’ formula lie on the other side of the true so!utions. This also explains 
why the values of Gmas and /J,, obtained with Woods’ formuia (Table 3) are higher 
than ali other vaIues. Such phenomena is also noticed in the spiine solutions of Rubi:: 
and Khosla [22j an-d Rubin and Graves [23] where the vaiuss of #maa (P 7 100) 
go down as a finer mesh is taken (see also Table 3j. Similar comments apply. to ri-K 
sizes of corner vortices (Table 6): stream function values near the upstream sjnguiar 
corner (Table 7) and total shear force on the moving wall iTable 8). Tr? ad&ion, 
the valnes of I;, for 1”, = 500 and 1000 clearly indicate the inaccuracies of the so_siu:ions 
obtained with the Woods’ formala, at least for large Reynolds numbers, compared. 
to those obtained with many of the first and second order formuias of the type I 2. i 3;; 
(2.14). 

It is noted that the values of u for the conventional (1, 0) boundary formu! are 
exactly those predicted theoretically, o = I ~- 12 - O(P). 

Many authors [j, 6, 13, 18, 20-22, 251 have compared certain velocity ~rofiiles, 
usually along some mid-section or a diagonal. Also the velocities do represent the 
physical phenomena more clearly than the numerical values of 4 and w. Caiculation 
of velocity values also involves numerical differentiation of one order lower t!lan the 
vorricity. In some sense the velocity profiles do provide a satisfactory method of 
comparing numerical solutions. It is, however. difficult to measure accuracy using 
these profiles. 

6. CONCLUSIONS 

We have examined a numerical procedure for solving two-dimensional Ya\,ier~ 
Stokes equations on a model problem of a square cavity. The values of vorticity on 
the no-slip boundaries are approximated using various extrapolation formulas of 
first and second order. It is found that most of these boundary approximations. for 
moderate values of p and CJ, yield numerical solutions which display the expected 
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characteristics of the fluid flow. At low Reynolds numbers, these solutions are even 
quantitatively comparable. In general, the two point formulas (4 f 0) give more 
accurate results than the one point formulas (q = 0). In particular, the (2, 1) formula, 
which is also known as Jensen’s formula [21], gives more accurate results than any 
of the other formulas examined here. This formula is also the most expensive in terms 
of the number of iterations required for convergence and we recommend the use of 
(3, 2) or (4, 3) formulas to obtain slightly less accurate solutions with substantially 
reduced cost. 

Several authors have considered Jensen’s formula and Woods’ formula and found 
them to be unstable (see, e.g., [21]). However, these formulas are not unstable. They 
do require a substantial amount of damping of the boundary values of vorticity and 
hence are quite slow in convergence. As seen in Section 5, it is quite easy to obtain 
near optimal values of the damping parameter which may be used to get the best 
possible rate of convergence. In general it was found that the more accurate the 
boundary approximation in terms of the truncation error, the larger the cost of 
obtaining the numerical solutions. 

With larger Reynolds numbers and a finer mesh, it is probable that the (2, 1) 
formula would require a very large amount of damping (even larger than 99 76). 
Such damping would make the convergence extremely slow and one may look at 
other approximations which are of the same order but cost much less. 

We have examined a number of parameters which are often quoted in the literature 
to compare various numerical solutions. A systematic study of these parameters has 
been carried out in order to determine whether they are reliable indicators of accuracy. 
While most of the parameters examined here give some qualitative idea of accuracy, 
we have isolated the following parameters which are believed to provide a quantitative 
distinction between various numerical solutions: maximum value of stream function; 
total shear force on the moving wall of the cavity; and the total vorticity 6 defined 
in Eq. (5.3). The value of vorticity at the vortex centre can also be compared but this 
in essense means a comparison of a linear combination of #-values in the neighborhood 
of the vortex centre, amplified by IT-‘. 

Most of our discussion of Section 5 is based on our experiences with the biharmonic 
equation [7, 10, 121 which is a special case of the Navier-Stokes equations with R = 0. 
In this case, the accuracy of the numerical solution deteriorates when (p, 4) boundary 
formulas are used with large p2 4. Our conclusions on the suitability of certain 
parameters are also based on the trends found in other published results. AS an 
example, the value of #,,, generally increase with the accuracy of the boundary 
approximations of the type given here (Table 3). Similarly, the value of #,,, increases 
with the refinement of the mesh in the finite difference methods [4]. On the other hand 
the value of z+Cmax decreases with the refinement of the mesh in the spline methods 
[22, 231. In all cases, there is a definite trend towards a limiting value of &,,, . From 
these obsei-vations one can safely conclude that the Woods’ formula overestimates 
the $,,,, by about 10 7;. 

It has so far been believed that the central difference approximation of the vorticity 
transport equation (2.2) provides a higher order accuracy than the upwind difference 
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scheme, at least for low Reynolds numbers. We did not find any perceptible difference 
between the solutions obtained with both types of difference schemes for h = l/20 
and R = 1, 10, 50 and 100. At higher Reynolds numbers the central difference scheme 
is either nonconvergent or gives inaccurate results. 

Finally, when the same problem was solved using finite element methods under 
various boundary approximations of the type (2.13) and (2.14), it was found [13 
that the rate of convergence of the iterative procedure was almost independent of the 
boundary approximation. In such a case it is advisable to use the (2, 1) formula. 
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